## [1] "There were 24 instances where a person's residence town didn't match up with their injury town, out of 131 ODs in 2018 in region 6. This is 0.183206 of all ODs in this year."
## [1] "Here's a more in-depth look at out-of-town ODs in specific towns:"
## Town name Out-of-town ODs Total ODs Proportion of out-of-town ODs
## 1 Bristol 3 23 0.13
## 2 Meriden 3 19 0.16
## 3 New Britain 7 44 0.16
## [1] "There were 18 instances where a person's residence town didn't match up with their injury town, out of 128 ODs in 2019 in region 6. This is 0.140625. "
## [1] "Here's a more in-depth look at out-of-town ODs in specific towns:"
## Town name Out-of-town ODs Total ODs Proportion of out-of-town ODs
## 1 New Britain 1 32 0.03
## 2 Bristol 1 21 0.05
## 3 Meriden 3 20 0.15
## [1] "There were 27 instances where a person's residence town didn't match up with their injury town, out of 163 ODs in 2020 in region 6. This is 0.165644. "
## [1] "Here's a more in-depth look at out-of-town ODs in specific towns:"
## Town name Out-of-town ODs Total ODs Proportion of out-of-town ODs
## 1 New Britain 6 35 0.17
## 2 Bristol 0 26 0
## 3 Meriden 2 30 0.07
## [1] "There were 41 instances where a person's residence town didn't match up with their injury town, out of 179 ODs in 2021 in region 6. This is 0.229050. "
## [1] "Here's a more in-depth look at out-of-town ODs in specific towns:"
## Town name Out-of-town ODs Total ODs Proportion of out-of-town ODs
## 1 New Britain 7 40 0.17
## 2 Bristol 1 34 0.03
## 3 Meriden 5 23 0.22
## [1] "There were 30 instances where a person's residence town didn't match up with their injury town, out of 168 ODs in 2022 in region 6. This is 0.178571. "
## [1] "Here's a more in-depth look at out-of-town ODs in specific towns:"
## Town name Out-of-town ODs Total ODs Proportion of out-of-town ODs
## 1 New Britain 5 46 0.11
## 2 Bristol 2 37 0.05
## 3 Meriden 3 29 0.1
## [1] "There were 88 people who OD'd in their own residence."
## [1] "The proportion of decedents ODing in their own residence was 0.647059."
## [1] "Out of everyone who OD'd in a residence, 0.871287 of people OD'd in their own residence."
## [1] "There were 101 people who OD'd in their own residence."
## [1] "The proportion of decedents ODing in their own residence was 0.716312."
## [1] "Out of everyone who OD'd in a residence, 0.863248 of people OD'd in their own residence."
## [1] "There were 124 people who OD'd in their own residence."
## [1] "The proportion of decedents ODing in their own residence was 0.708571."
## [1] "Out of everyone who OD'd in a residence, 0.879433 of people OD'd in their own residence."
## [1] "There were 124 people who OD'd in their own residence."
## [1] "The proportion of decedents ODing in their own residence was 0.677596."
## [1] "Out of everyone who OD'd in a residence, 0.837838 of people OD'd in their own residence."
## [1] "There were 127 people who OD'd in their own residence."
## [1] "The proportion of decedents ODing in their own residence was 0.709497."
## [1] "Out of everyone who OD'd in a residence, 0.927007 of people OD'd in their own residence."
## Rows: 5
## Columns: 32
## Groups: cocaine, combo..her.pharm.or.fent..OR.pharm.fent, heronly, pharmonly, fentonly, heroin, X6.mam, morphine, hermor_nocod, codeine, cod_w_no_hermor, di.H.codeine, hydromorphone, oxymorphone, hydrocodone, oxycodone, methadone, buprenorphine, fentanyl..4ANPP.too., Frankens, fent.or.frankens, tramadol, opioid.analogs..e.g...U47700., otherop, pharma_w_meth_no_fent.or.op.analogs.or.cod.or..other.op., pharma_nobupnometh, other, benzos, amphetamine, EtOH [4]
## $ cocaine <int> 0, 0, 1, 0, 0
## $ combo..her.pharm.or.fent..OR.pharm.fent <int> 0, 0, 0, 0, 0
## $ heronly <int> 0, 0, 0, 0, 0
## $ pharmonly <int> 0, 0, 0, 0, 0
## $ fentonly <int> 1, 1, 1, 1, 1
## $ heroin <int> 0, 0, 0, 0, 0
## $ X6.mam <int> 0, 0, 0, 0, 0
## $ morphine <int> 0, 0, 0, 0, 0
## $ hermor_nocod <int> 0, 0, 0, 0, 0
## $ codeine <int> 0, 0, 0, 0, 0
## $ cod_w_no_hermor <int> 0, 0, 0, 0, 0
## $ di.H.codeine <int> 0, 0, 0, 0, 0
## $ hydromorphone <int> 0, 0, 0, 0, 0
## $ oxymorphone <int> 0, 0, 0, 0, 0
## $ hydrocodone <int> 0, 0, 0, 0, 0
## $ oxycodone <int> 0, 0, 0, 0, 0
## $ methadone <int> 0, 0, 0, 0, 0
## $ buprenorphine <int> 0, 0, 0, 0, 0
## $ fentanyl..4ANPP.too. <int> 1, 1, 1, 1, 1
## $ Frankens <int> 0, 1, 0, 0, 1
## $ fent.or.frankens <int> 1, 1, 1, 1, 1
## $ tramadol <int> 0, 0, 0, 0, 0
## $ opioid.analogs..e.g...U47700. <int> 0, 0, 0, 0, 0
## $ otherop <int> 0, 0, 0, 0, 0
## $ pharma_w_meth_no_fent.or.op.analogs.or.cod.or..other.op. <int> 0, 0, 0, 0, 0
## $ pharma_nobupnometh <int> 0, 0, 0, 0, 0
## $ other <int> 0, 0, 0, 0, 0
## $ benzos <int> 0, 1, 0, 0, 0
## $ amphetamine <int> 0, 0, 0, 0, 0
## $ EtOH <int> 0, 0, 0, 0, 0
## $ THC <int> 0, 0, 0, 1, 0
## $ n <int> 9, 5, 4, 3, 3
The top 5 substance combinations for 2018 are:
## Rows: 5
## Columns: 33
## Groups: xyla, combo, heronly, pharmonly, fentonly, Heroin, X6.mam, Morphine, hermor_nocod, Codeine, cod.w.no.hermor, di.H.codeine, Hydromorphone, oxymorphone, Hydrocodone, Oxycodone, Methadone, bup, fentanyl..4.ANPP.too., frankens, fent...frankens, tramadol, opioid.analogs..e.g...U47700., Other.Op, pharma.w.meth.bup.no.fent.or.other.op, pharma_nobupnometh, other, benzos, cocaine, amphetamine, EtOH [4]
## $ xyla <int> 0, 0, 0, 0, 0
## $ combo <int> 0, 0, 0, 0, 0
## $ heronly <int> 0, 0, 0, 0, 0
## $ pharmonly <int> 0, 0, 0, 0, 0
## $ fentonly <int> 1, 1, 1, 1, 1
## $ Heroin <int> 0, 0, 0, 0, 0
## $ X6.mam <int> 0, 0, 0, 0, 0
## $ Morphine <int> 0, 0, 0, 0, 0
## $ hermor_nocod <int> 0, 0, 0, 0, 0
## $ Codeine <int> 0, 0, 0, 0, 0
## $ cod.w.no.hermor <int> 0, 0, 0, 0, 0
## $ di.H.codeine <int> 0, 0, 0, 0, 0
## $ Hydromorphone <int> 0, 0, 0, 0, 0
## $ oxymorphone <int> 0, 0, 0, 0, 0
## $ Hydrocodone <int> 0, 0, 0, 0, 0
## $ Oxycodone <int> 0, 0, 0, 0, 0
## $ Methadone <int> 0, 0, 0, 0, 0
## $ bup <int> 0, 0, 0, 0, 0
## $ fentanyl..4.ANPP.too. <int> 1, 1, 1, 1, 1
## $ frankens <int> 0, 0, 0, 0, 0
## $ fent...frankens <int> 1, 1, 1, 1, 1
## $ tramadol <int> 0, 0, 0, 0, 0
## $ opioid.analogs..e.g...U47700. <int> 0, 0, 0, 0, 0
## $ Other.Op <int> 0, 0, 0, 0, 0
## $ pharma.w.meth.bup.no.fent.or.other.op <int> 0, 0, 0, 0, 0
## $ pharma_nobupnometh <int> 0, 0, 0, 0, 0
## $ other <int> 0, 0, 1, 1, 0
## $ benzos <int> 0, 0, 0, 0, 0
## $ cocaine <int> 1, 0, 0, 1, 1
## $ amphetamine <int> 0, 0, 0, 0, 0
## $ EtOH <int> 0, 1, 0, 0, 0
## $ THC <int> 0, 0, 0, 0, 1
## $ n <int> 6, 5, 5, 5, 4
The top 5 substance combinations for 2019 are:
## Rows: 5
## Columns: 32
## Groups: combo, heronly, pharmonly, fentonly, Heroin, X6.mam, Morphine, hermor_nocod, Codeine, cod.w.no.hermor, di.H.codeine, Hydromorphone, oxymorphone, Hydrocodone, Oxycodone, Methadone, bup, fentanyl..4.ANPP.too., frankens, fent...frankens, tramadol, opioid.analogs..e.g...U47700., Other.Op, pharma.w.meth.bup.no.fent.or.other.op, pharma_nobupnometh, other, benzos, cocaine, amphetamine, EtOH [5]
## $ combo <chr> "0", "0", "0", "0", "0"
## $ heronly <chr> "0", "0", "0", "0", "0"
## $ pharmonly <chr> "0", "0", "0", "0", "0"
## $ fentonly <chr> "1", "1", "1", "1", "1"
## $ Heroin <dbl> 0, 0, 0, 0, 0
## $ X6.mam <dbl> 0, 0, 0, 0, 0
## $ Morphine <dbl> 0, 0, 0, 0, 0
## $ hermor_nocod <dbl> 0, 0, 0, 0, 0
## $ Codeine <dbl> 0, 0, 0, 0, 0
## $ cod.w.no.hermor <dbl> 0, 0, 0, 0, 0
## $ di.H.codeine <dbl> 0, 0, 0, 0, 0
## $ Hydromorphone <dbl> 0, 0, 0, 0, 0
## $ oxymorphone <dbl> 0, 0, 0, 0, 0
## $ Hydrocodone <dbl> 0, 0, 0, 0, 0
## $ Oxycodone <dbl> 0, 0, 0, 0, 0
## $ Methadone <dbl> 0, 0, 0, 0, 0
## $ bup <dbl> 0, 0, 0, 0, 0
## $ fentanyl..4.ANPP.too. <dbl> 1, 1, 1, 1, 1
## $ frankens <dbl> 0, 0, 0, 0, 0
## $ fent...frankens <dbl> 1, 1, 1, 1, 1
## $ tramadol <dbl> 0, 0, 0, 0, 0
## $ opioid.analogs..e.g...U47700. <dbl> 0, 0, 0, 0, 0
## $ Other.Op <dbl> 0, 0, 0, 0, 0
## $ pharma.w.meth.bup.no.fent.or.other.op <dbl> 0, 0, 0, 0, 0
## $ pharma_nobupnometh <dbl> 0, 0, 0, 0, 0
## $ other <dbl> 0, 0, 0, 1, 1
## $ benzos <dbl> 0, 0, 0, 0, 0
## $ cocaine <dbl> 0, 1, 0, 0, 1
## $ amphetamine <dbl> 0, 0, 0, 0, 0
## $ EtOH <dbl> 0, 0, 1, 0, 0
## $ THC <dbl> 0, 0, 0, 0, 0
## $ n <int> 14, 9, 8, 7, 7
The top 5 substance combinations for 2020 are:
## Rows: 5
## Columns: 32
## Groups: combo, her.only, pharm.only, fent.only, Heroin, X6.mam, Morphine, hermor_nocod, Codeine, cod.w.no.hermor, di.H.codeine, Hydromorphone, oxymorphone, Hydrocodone, Oxycodone, Methadone, bup, fentanyl..4.ANPP.despropionyl.fent.too., frankens, fent...frankens, tramadol, opioid.analogs.e.g.mitragynine, Other.Op, pharma.w.meth.bup.no.fent.or.other.op, pharma_nobupnometh, other, benzos, cocaine, amphetamine..including.eutylone., EtOH [5]
## $ combo <int> 0, 0, 0, 0, 0
## $ her.only <int> 0, 0, 0, 0, 0
## $ pharm.only <int> 0, 0, 0, 0, 0
## $ fent.only <int> 1, 1, 1, 1, 1
## $ Heroin <int> 0, 0, 0, 0, 0
## $ X6.mam <int> 0, 0, 0, 0, 0
## $ Morphine <int> 0, 0, 0, 0, 0
## $ hermor_nocod <int> 0, 0, 0, 0, 0
## $ Codeine <int> 0, 0, 0, 0, 0
## $ cod.w.no.hermor <int> 0, 0, 0, 0, 0
## $ di.H.codeine <int> 0, 0, 0, 0, 0
## $ Hydromorphone <int> 0, 0, 0, 0, 0
## $ oxymorphone <int> 0, 0, 0, 0, 0
## $ Hydrocodone <int> 0, 0, 0, 0, 0
## $ Oxycodone <int> 0, 0, 0, 0, 0
## $ Methadone <int> 0, 0, 0, 0, 0
## $ bup <int> 0, 0, 0, 0, 0
## $ fentanyl..4.ANPP.despropionyl.fent.too. <int> 1, 1, 1, 1, 1
## $ frankens <int> 0, 0, 0, 0, 0
## $ fent...frankens <int> 1, 1, 1, 1, 1
## $ tramadol <int> 0, 0, 0, 0, 0
## $ opioid.analogs.e.g.mitragynine <int> 0, 0, 0, 0, 0
## $ Other.Op <int> 0, 0, 0, 0, 0
## $ pharma.w.meth.bup.no.fent.or.other.op <int> 0, 0, 0, 0, 0
## $ pharma_nobupnometh <int> 0, 0, 0, 0, 0
## $ other <int> 1, 0, 0, 0, 1
## $ benzos <int> 0, 0, 0, 0, 0
## $ cocaine <int> 1, 0, 1, 0, 0
## $ amphetamine..including.eutylone. <int> 0, 0, 0, 0, 0
## $ EtOH <int> 0, 1, 0, 0, 0
## $ THC <int> 0, 0, 0, 0, 0
## $ n <int> 14, 9, 9, 7, 7
The top 5 substance combinations for 2021 are:
## Rows: 5
## Columns: 32
## Groups: combo, her.only, pharm.only, fent.only, Heroin, X6.mam, Morphine, hermor_nocod, Codeine, cod.w.no.hermor, di.H.codeine, Hydro.morphone, oxy.morphone, Hydro.codone, Oxy.codone, Methadone, bup, fentanyl..4.ANPP.despropionyl.fent.too., frankens, fent...frankens, tramadol, opioid.analogs.e.g.mitragynine, Other.Op, pharma.w.meth.bup.no.fent.or.other.op, pharma_nobupnometh, other, benzos, cocaine, amphetamine.including.eutylone.MDMA, EtOH [5]
## $ combo <int> 0, 0, 0, 0, 0
## $ her.only <int> 0, 0, 0, 0, 0
## $ pharm.only <int> 0, 0, 0, 0, 0
## $ fent.only <int> 1, 1, 1, 1, 1
## $ Heroin <int> 0, 0, 0, 0, 0
## $ X6.mam <int> 0, 0, 0, 0, 0
## $ Morphine <int> 0, 0, 0, 0, 0
## $ hermor_nocod <int> 0, 0, 0, 0, 0
## $ Codeine <int> 0, 0, 0, 0, 0
## $ cod.w.no.hermor <int> 0, 0, 0, 0, 0
## $ di.H.codeine <int> 0, 0, 0, 0, 0
## $ Hydro.morphone <int> 0, 0, 0, 0, 0
## $ oxy.morphone <int> 0, 0, 0, 0, 0
## $ Hydro.codone <int> 0, 0, 0, 0, 0
## $ Oxy.codone <int> 0, 0, 0, 0, 0
## $ Methadone <int> 0, 0, 0, 0, 0
## $ bup <int> 0, 0, 0, 0, 0
## $ fentanyl..4.ANPP.despropionyl.fent.too. <int> 1, 1, 1, 1, 1
## $ frankens <int> 0, 0, 0, 0, 0
## $ fent...frankens <int> 1, 1, 1, 1, 1
## $ tramadol <int> 0, 0, 0, 0, 0
## $ opioid.analogs.e.g.mitragynine <int> 0, 0, 0, 0, 0
## $ Other.Op <int> 0, 0, 0, 0, 0
## $ pharma.w.meth.bup.no.fent.or.other.op <int> 0, 0, 0, 0, 0
## $ pharma_nobupnometh <int> 0, 0, 0, 0, 0
## $ other <int> 1, 0, 1, 1, 0
## $ benzos <int> 0, 0, 0, 0, 0
## $ cocaine <int> 1, 1, 1, 0, 0
## $ amphetamine.including.eutylone.MDMA <int> 0, 0, 0, 0, 0
## $ EtOH <int> 0, 0, 1, 0, 1
## $ THC <int> 0, 0, 0, 0, 0
## $ n <int> 16, 14, 13, 7, 6
The top 5 substance combinations for 2022 are:
I identify chronic users crudely – I look for entries where the words “chronic” [can sometimes indicate chronic pain, meaning opioid scripts], “Chronic”, “user”, “drug use”, “drug user”, “drug abuse”, “snort”, “snorts”, “drug abuse”, “addict”, “addicted”, “rehab”, “sober house”, “clean” or “abuse” pops up in either the notes field or immediate cause of death, because that generally means that the person had chronic drug use [based on my look at the data]
## [1] "There were at least 38 people with known chronic use out of 136 decedents in 2018, which is 27.941176 percent of all decedents."
## [1] "There were at least 66 people with known chronic use out of 141 decedents in 2019, which is 46.808511 percent of all decedents."
## [1] "There were at least 99 people with known chronic use out of 175 decedents in 2020, which is 56.571429 percent of all decedents."
## [1] "There were at least 83 people with known chronic use out of 183 decedents in 2021, which is 45.355191 percent of all decedents."
## [1] "There were at least 97 people with known chronic use out of 179 decedents in 2022, which is 54.189944 percent of all decedents."
Please note: this field and all fields explored below are only available up to 2020.
## [1] "There were 97 people found within 24 hours, which is 0.713235 of all decedents."
## [1] "There were 22 people found in over 24 hours, which is 0.161765 of all decedents."
## [1] "There were 112 people found within 24 hours, which is 0.794326 of all decedents."
## [1] "There were 21 people found in over 24 hours, which is 0.148936 of all decedents."
## [1] "There were 128 people found within 24 hours, which is 0.731429 of all decedents."
## [1] "There were 28 people found in over 24 hours, which is 0.160000 of all decedents."
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h