## [1] "There were 18 instances where a person's residence town didn't match up with their injury town, out of 168 ODs in 2018 in region 5. This is 0.107143 of all ODs in this year."
## [1] "Here's a more in-depth look at out-of-town ODs in specific towns:"
## Town name Out-of-town ODs Total ODs Proportion of out-of-town ODs
## 1 Danbury 3 15 0.2
## 2 Waterbury 5 66 0.08
## [1] "There were 32 instances where a person's residence town didn't match up with their injury town, out of 212 ODs in 2019 in region 5. This is 0.150943. "
## [1] "Here's a more in-depth look at out-of-town ODs in specific towns:"
## Town name Out-of-town ODs Total ODs Proportion of out-of-town ODs
## 1 Danbury 3 16 0.19
## 2 Waterbury 15 91 0.16
## [1] "There were 27 instances where a person's residence town didn't match up with their injury town, out of 214 ODs in 2020 in region 5. This is 0.126168. "
## [1] "Here's a more in-depth look at out-of-town ODs in specific towns:"
## Town name Out-of-town ODs Total ODs Proportion of out-of-town ODs
## 1 Danbury 2 23 0.09
## 2 Waterbury 12 87 0.14
## [1] "There were 31 instances where a person's residence town didn't match up with their injury town, out of 205 ODs in 2021 in region 5. This is 0.151220. "
## [1] "Here's a more in-depth look at out-of-town ODs in specific towns:"
## Town name Out-of-town ODs Total ODs Proportion of out-of-town ODs
## 1 Danbury 6 23 0.26
## 2 Waterbury 12 88 0.14
## [1] "There were 35 instances where a person's residence town didn't match up with their injury town, out of 198 ODs in 2022 in region 5. This is 0.176768. "
## [1] "Here's a more in-depth look at out-of-town ODs in specific towns:"
## Town name Out-of-town ODs Total ODs Proportion of out-of-town ODs
## 1 Danbury 4 21 0.19
## 2 Waterbury 18 99 0.18
## [1] "There were 122 people who OD'd in their own residence."
## [1] "The proportion of decedents ODing in their own residence was 0.709302."
## [1] "Out of everyone who OD'd in a residence, 0.835616 of people OD'd in their own residence."
## [1] "There were 144 people who OD'd in their own residence."
## [1] "The proportion of decedents ODing in their own residence was 0.640000."
## [1] "Out of everyone who OD'd in a residence, 0.774194 of people OD'd in their own residence."
## [1] "There were 151 people who OD'd in their own residence."
## [1] "The proportion of decedents ODing in their own residence was 0.671111."
## [1] "Out of everyone who OD'd in a residence, 0.838889 of people OD'd in their own residence."
## [1] "There were 150 people who OD'd in their own residence."
## [1] "The proportion of decedents ODing in their own residence was 0.707547."
## [1] "Out of everyone who OD'd in a residence, 0.833333 of people OD'd in their own residence."
## [1] "There were 136 people who OD'd in their own residence."
## [1] "The proportion of decedents ODing in their own residence was 0.673267."
## [1] "Out of everyone who OD'd in a residence, 0.850000 of people OD'd in their own residence."
## Rows: 5
## Columns: 32
## Groups: cocaine, combo..her.pharm.or.fent..OR.pharm.fent, heronly, pharmonly, fentonly, heroin, X6.mam, morphine, hermor_nocod, codeine, cod_w_no_hermor, di.H.codeine, hydromorphone, oxymorphone, hydrocodone, oxycodone, methadone, buprenorphine, fentanyl..4ANPP.too., Frankens, fent.or.frankens, tramadol, opioid.analogs..e.g...U47700., otherop, pharma_w_meth_no_fent.or.op.analogs.or.cod.or..other.op., pharma_nobupnometh, other, benzos, amphetamine, EtOH [5]
## $ cocaine <int> 1, 0, 0, 0, 0
## $ combo..her.pharm.or.fent..OR.pharm.fent <int> 0, 1, 1, 0, 0
## $ heronly <int> 0, 0, 0, 0, 1
## $ pharmonly <int> 0, 0, 0, 0, 0
## $ fentonly <int> 1, 0, 0, 1, 0
## $ heroin <int> 0, 1, 1, 0, 1
## $ X6.mam <int> 0, 1, 1, 0, 1
## $ morphine <int> 0, 1, 1, 0, 1
## $ hermor_nocod <int> 0, 1, 1, 0, 1
## $ codeine <int> 0, 0, 0, 0, 0
## $ cod_w_no_hermor <int> 0, 0, 0, 0, 0
## $ di.H.codeine <int> 0, 0, 0, 0, 0
## $ hydromorphone <int> 0, 0, 0, 0, 0
## $ oxymorphone <int> 0, 0, 0, 0, 0
## $ hydrocodone <int> 0, 0, 0, 0, 0
## $ oxycodone <int> 0, 0, 0, 0, 0
## $ methadone <int> 0, 0, 0, 0, 0
## $ buprenorphine <int> 0, 0, 0, 0, 0
## $ fentanyl..4ANPP.too. <int> 1, 1, 1, 1, 0
## $ Frankens <int> 0, 0, 1, 1, 0
## $ fent.or.frankens <int> 1, 1, 1, 1, 0
## $ tramadol <int> 0, 0, 0, 0, 0
## $ opioid.analogs..e.g...U47700. <int> 0, 0, 0, 0, 0
## $ otherop <int> 0, 0, 0, 0, 0
## $ pharma_w_meth_no_fent.or.op.analogs.or.cod.or..other.op. <int> 0, 0, 0, 0, 0
## $ pharma_nobupnometh <int> 0, 0, 0, 0, 0
## $ other <int> 0, 0, 0, 1, 1
## $ benzos <int> 0, 0, 0, 0, 0
## $ amphetamine <int> 0, 0, 0, 0, 0
## $ EtOH <int> 0, 0, 0, 0, 0
## $ THC <int> 0, 0, 0, 0, 0
## $ n <int> 5, 4, 4, 3, 3
The top 5 substance combinations for 2018 are:
## Rows: 5
## Columns: 33
## Groups: xyla, combo, heronly, pharmonly, fentonly, Heroin, X6.mam, Morphine, hermor_nocod, Codeine, cod.w.no.hermor, di.H.codeine, Hydromorphone, oxymorphone, Hydrocodone, Oxycodone, Methadone, bup, fentanyl..4.ANPP.too., frankens, fent...frankens, tramadol, opioid.analogs..e.g...U47700., Other.Op, pharma.w.meth.bup.no.fent.or.other.op, pharma_nobupnometh, other, benzos, cocaine, amphetamine, EtOH [5]
## $ xyla <int> 0, 0, 0, 0, 0
## $ combo <int> 0, 0, 0, 1, 1
## $ heronly <int> 0, 0, 0, 0, 0
## $ pharmonly <int> 0, 0, 0, 0, 0
## $ fentonly <int> 1, 1, 1, 0, 0
## $ Heroin <int> 0, 0, 0, 1, 1
## $ X6.mam <int> 0, 0, 0, 1, 1
## $ Morphine <int> 0, 0, 0, 1, 1
## $ hermor_nocod <int> 0, 0, 0, 1, 1
## $ Codeine <int> 0, 0, 0, 0, 0
## $ cod.w.no.hermor <int> 0, 0, 0, 0, 0
## $ di.H.codeine <int> 0, 0, 0, 0, 0
## $ Hydromorphone <int> 0, 0, 0, 0, 0
## $ oxymorphone <int> 0, 0, 0, 0, 0
## $ Hydrocodone <int> 0, 0, 0, 0, 0
## $ Oxycodone <int> 0, 0, 0, 0, 0
## $ Methadone <int> 0, 0, 0, 0, 0
## $ bup <int> 0, 0, 0, 0, 0
## $ fentanyl..4.ANPP.too. <int> 1, 1, 1, 1, 1
## $ frankens <int> 0, 0, 0, 0, 0
## $ fent...frankens <int> 1, 1, 1, 1, 1
## $ tramadol <int> 0, 0, 0, 0, 0
## $ opioid.analogs..e.g...U47700. <int> 0, 0, 0, 0, 0
## $ Other.Op <int> 0, 0, 0, 0, 0
## $ pharma.w.meth.bup.no.fent.or.other.op <int> 0, 0, 0, 0, 0
## $ pharma_nobupnometh <int> 0, 0, 0, 0, 0
## $ other <int> 0, 0, 1, 0, 0
## $ benzos <int> 0, 0, 0, 0, 0
## $ cocaine <int> 0, 1, 1, 0, 1
## $ amphetamine <int> 0, 0, 0, 0, 0
## $ EtOH <int> 0, 0, 1, 0, 0
## $ THC <int> 0, 1, 0, 0, 0
## $ n <int> 10, 6, 6, 6, 6
The top 5 substance combinations for 2019 are:
## Rows: 5
## Columns: 32
## Groups: combo, heronly, pharmonly, fentonly, Heroin, X6.mam, Morphine, hermor_nocod, Codeine, cod.w.no.hermor, di.H.codeine, Hydromorphone, oxymorphone, Hydrocodone, Oxycodone, Methadone, bup, fentanyl..4.ANPP.too., frankens, fent...frankens, tramadol, opioid.analogs..e.g...U47700., Other.Op, pharma.w.meth.bup.no.fent.or.other.op, pharma_nobupnometh, other, benzos, cocaine, amphetamine, EtOH [4]
## $ combo <chr> "0", "0", "0", "0", "0"
## $ heronly <chr> "0", "0", "0", "0", "0"
## $ pharmonly <chr> "0", "0", "0", "0", "0"
## $ fentonly <chr> "1", "1", "1", "1", "1"
## $ Heroin <dbl> 0, 0, 0, 0, 0
## $ X6.mam <dbl> 0, 0, 0, 0, 0
## $ Morphine <dbl> 0, 0, 0, 0, 0
## $ hermor_nocod <dbl> 0, 0, 0, 0, 0
## $ Codeine <dbl> 0, 0, 0, 0, 0
## $ cod.w.no.hermor <dbl> 0, 0, 0, 0, 0
## $ di.H.codeine <dbl> 0, 0, 0, 0, 0
## $ Hydromorphone <dbl> 0, 0, 0, 0, 0
## $ oxymorphone <dbl> 0, 0, 0, 0, 0
## $ Hydrocodone <dbl> 0, 0, 0, 0, 0
## $ Oxycodone <dbl> 0, 0, 0, 0, 0
## $ Methadone <dbl> 0, 0, 0, 0, 0
## $ bup <dbl> 0, 0, 0, 0, 0
## $ fentanyl..4.ANPP.too. <dbl> 1, 1, 1, 1, 1
## $ frankens <dbl> 0, 0, 0, 0, 0
## $ fent...frankens <dbl> 1, 1, 1, 1, 1
## $ tramadol <dbl> 0, 0, 0, 0, 0
## $ opioid.analogs..e.g...U47700. <dbl> 0, 0, 0, 0, 0
## $ Other.Op <dbl> 0, 0, 0, 0, 0
## $ pharma.w.meth.bup.no.fent.or.other.op <dbl> 0, 0, 0, 0, 0
## $ pharma_nobupnometh <dbl> 0, 0, 0, 0, 0
## $ other <dbl> 1, 0, 0, 0, 0
## $ benzos <dbl> 0, 0, 0, 0, 0
## $ cocaine <dbl> 1, 1, 0, 1, 0
## $ amphetamine <dbl> 0, 0, 0, 0, 0
## $ EtOH <dbl> 0, 0, 0, 1, 0
## $ THC <dbl> 0, 0, 0, 0, 1
## $ n <int> 13, 12, 11, 9, 6
The top 5 substance combinations for 2020 are:
## Rows: 5
## Columns: 32
## Groups: combo, her.only, pharm.only, fent.only, Heroin, X6.mam, Morphine, hermor_nocod, Codeine, cod.w.no.hermor, di.H.codeine, Hydromorphone, oxymorphone, Hydrocodone, Oxycodone, Methadone, bup, fentanyl..4.ANPP.despropionyl.fent.too., frankens, fent...frankens, tramadol, opioid.analogs.e.g.mitragynine, Other.Op, pharma.w.meth.bup.no.fent.or.other.op, pharma_nobupnometh, other, benzos, cocaine, amphetamine..including.eutylone., EtOH [5]
## $ combo <int> 0, 0, 0, 0, 0
## $ her.only <int> 0, 0, 0, 0, 0
## $ pharm.only <int> 0, 0, 0, 0, 0
## $ fent.only <int> 1, 1, 1, 1, 1
## $ Heroin <int> 0, 0, 0, 0, 0
## $ X6.mam <int> 0, 0, 0, 0, 0
## $ Morphine <int> 0, 0, 0, 0, 0
## $ hermor_nocod <int> 0, 0, 0, 0, 0
## $ Codeine <int> 0, 0, 0, 0, 0
## $ cod.w.no.hermor <int> 0, 0, 0, 0, 0
## $ di.H.codeine <int> 0, 0, 0, 0, 0
## $ Hydromorphone <int> 0, 0, 0, 0, 0
## $ oxymorphone <int> 0, 0, 0, 0, 0
## $ Hydrocodone <int> 0, 0, 0, 0, 0
## $ Oxycodone <int> 0, 0, 0, 0, 0
## $ Methadone <int> 0, 0, 0, 0, 0
## $ bup <int> 0, 0, 0, 0, 0
## $ fentanyl..4.ANPP.despropionyl.fent.too. <int> 1, 1, 1, 1, 1
## $ frankens <int> 0, 0, 0, 0, 0
## $ fent...frankens <int> 1, 1, 1, 1, 1
## $ tramadol <int> 0, 0, 0, 0, 0
## $ opioid.analogs.e.g.mitragynine <int> 0, 0, 0, 0, 0
## $ Other.Op <int> 0, 0, 0, 0, 0
## $ pharma.w.meth.bup.no.fent.or.other.op <int> 0, 0, 0, 0, 0
## $ pharma_nobupnometh <int> 0, 0, 0, 0, 0
## $ other <int> 1, 1, 0, 1, 1
## $ benzos <int> 0, 0, 0, 0, 0
## $ cocaine <int> 0, 1, 0, 0, 1
## $ amphetamine..including.eutylone. <int> 0, 0, 0, 0, 0
## $ EtOH <int> 0, 0, 0, 1, 1
## $ THC <int> 0, 0, 0, 0, 0
## $ n <int> 9, 9, 8, 8, 8
The top 5 substance combinations for 2021 are:
## Rows: 5
## Columns: 32
## Groups: combo, her.only, pharm.only, fent.only, Heroin, X6.mam, Morphine, hermor_nocod, Codeine, cod.w.no.hermor, di.H.codeine, Hydro.morphone, oxy.morphone, Hydro.codone, Oxy.codone, Methadone, bup, fentanyl..4.ANPP.despropionyl.fent.too., frankens, fent...frankens, tramadol, opioid.analogs.e.g.mitragynine, Other.Op, pharma.w.meth.bup.no.fent.or.other.op, pharma_nobupnometh, other, benzos, cocaine, amphetamine.including.eutylone.MDMA, EtOH [5]
## $ combo <int> 0, 0, 0, 0, 0
## $ her.only <int> 0, 0, 0, 0, 0
## $ pharm.only <int> 0, 0, 0, 0, 0
## $ fent.only <int> 1, 1, 1, 1, 1
## $ Heroin <int> 0, 0, 0, 0, 0
## $ X6.mam <int> 0, 0, 0, 0, 0
## $ Morphine <int> 0, 0, 0, 0, 0
## $ hermor_nocod <int> 0, 0, 0, 0, 0
## $ Codeine <int> 0, 0, 0, 0, 0
## $ cod.w.no.hermor <int> 0, 0, 0, 0, 0
## $ di.H.codeine <int> 0, 0, 0, 0, 0
## $ Hydro.morphone <int> 0, 0, 0, 0, 0
## $ oxy.morphone <int> 0, 0, 0, 0, 0
## $ Hydro.codone <int> 0, 0, 0, 0, 0
## $ Oxy.codone <int> 0, 0, 0, 0, 0
## $ Methadone <int> 0, 0, 0, 0, 0
## $ bup <int> 0, 0, 0, 0, 0
## $ fentanyl..4.ANPP.despropionyl.fent.too. <int> 1, 1, 1, 1, 1
## $ frankens <int> 0, 0, 0, 0, 0
## $ fent...frankens <int> 1, 1, 1, 1, 1
## $ tramadol <int> 0, 0, 0, 0, 0
## $ opioid.analogs.e.g.mitragynine <int> 0, 0, 0, 0, 0
## $ Other.Op <int> 0, 0, 0, 0, 0
## $ pharma.w.meth.bup.no.fent.or.other.op <int> 0, 0, 0, 0, 0
## $ pharma_nobupnometh <int> 0, 0, 0, 0, 0
## $ other <int> 1, 0, 0, 0, 1
## $ benzos <int> 0, 0, 0, 0, 0
## $ cocaine <int> 1, 1, 0, 1, 0
## $ amphetamine.including.eutylone.MDMA <int> 0, 0, 0, 0, 0
## $ EtOH <int> 0, 0, 0, 1, 0
## $ THC <int> 0, 0, 0, 0, 1
## $ n <int> 19, 14, 8, 8, 8
The top 5 substance combinations for 2022 are:
I identify chronic users crudely – I look for entries where the words “chronic” [can sometimes indicate chronic pain, meaning opioid scripts], “Chronic”, “user”, “drug use”, “drug user”, “drug abuse”, “snort”, “snorts”, “drug abuse”, “addict”, “addicted”, “rehab”, “sober house”, “clean” or “abuse” pops up in either the notes field or immediate cause of death, because that generally means that the person had chronic drug use [based on my look at the data]
## [1] "There were at least 47 people with known chronic use out of 172 decedents in 2018, which is 27.325581 percent of all decedents."
## [1] "There were at least 101 people with known chronic use out of 225 decedents in 2019, which is 44.888889 percent of all decedents."
## [1] "There were at least 118 people with known chronic use out of 225 decedents in 2020, which is 52.444444 percent of all decedents."
## [1] "There were at least 126 people with known chronic use out of 212 decedents in 2021, which is 59.433962 percent of all decedents."
## [1] "There were at least 105 people with known chronic use out of 202 decedents in 2022, which is 51.980198 percent of all decedents."
Please note: this field and all fields explored below are only available up to 2020.
## [1] "There were 127 people found within 24 hours, which is 0.738372 of all decedents."
## [1] "There were 25 people found in over 24 hours, which is 0.145349 of all decedents."
## [1] "There were 172 people found within 24 hours, which is 0.764444 of all decedents."
## [1] "There were 43 people found in over 24 hours, which is 0.191111 of all decedents."
## [1] "There were 175 people found within 24 hours, which is 0.777778 of all decedents."
## [1] "There were 30 people found in over 24 hours, which is 0.133333 of all decedents."
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h