## [1] "There were 20 instances where a person's residence town didn't match up with their injury town, out of 114 ODs in 2018 in region 2. This is 0.175439 of all ODs in this year."
## [1] "Here's a more in-depth look at out-of-town ODs in specific towns:"
## Town name Out-of-town ODs Total ODs Proportion of out-of-town ODs
## 1 New Haven 5 38 0.13
## 2 North Haven 0 1 0
## 3 East Haven 0 7 0
## 4 West Haven 2 12 0.17
## 5 Orange 1 1 1
## [1] "There were 29 instances where a person's residence town didn't match up with their injury town, out of 172 ODs in 2019 in region 2. This is 0.168605. "
## [1] "Here's a more in-depth look at out-of-town ODs in specific towns:"
## Town name Out-of-town ODs Total ODs Proportion of out-of-town ODs
## 1 New Haven 9 55 0.16
## 2 North Haven 0 6 0
## 3 East Haven 0 12 0
## 4 West Haven 6 24 0.25
## 5 Orange 0 2 0
## [1] "There were 29 instances where a person's residence town didn't match up with their injury town, out of 208 ODs in 2020 in region 2. This is 0.139423. "
## [1] "Here's a more in-depth look at out-of-town ODs in specific towns:"
## Town name Out-of-town ODs Total ODs Proportion of out-of-town ODs
## 1 New Haven 9 81 0.11
## 2 North Haven 2 4 0.5
## 3 East Haven 3 14 0.21
## 4 West Haven 3 17 0.18
## 5 Orange 0 2 0
## [1] "There were 54 instances where a person's residence town didn't match up with their injury town, out of 302 ODs in 2021 in region 2. This is 0.178808. "
## [1] "Here's a more in-depth look at out-of-town ODs in specific towns:"
## Town name Out-of-town ODs Total ODs Proportion of out-of-town ODs
## 1 New Haven 27 135 0.2
## 2 North Haven 1 6 0.17
## 3 East Haven 2 14 0.14
## 4 West Haven 6 39 0.15
## 5 Orange 0 1 0
## [1] "There were 45 instances where a person's residence town didn't match up with their injury town, out of 270 ODs in 2022 in region 2. This is 0.166667. "
## [1] "Here's a more in-depth look at out-of-town ODs in specific towns:"
## Town name Out-of-town ODs Total ODs Proportion of out-of-town ODs
## 1 New Haven 25 125 0.2
## 2 North Haven 2 5 0.4
## 3 East Haven 3 19 0.16
## 4 West Haven 5 27 0.19
## 5 Orange 0 2 0
## [1] "There were 80 people who OD'd in their own residence."
## [1] "The proportion of decedents ODing in their own residence was 0.666667."
## [1] "Out of everyone who OD'd in a residence, 0.816327 of people OD'd in their own residence."
## [1] "There were 128 people who OD'd in their own residence."
## [1] "The proportion of decedents ODing in their own residence was 0.731429."
## [1] "Out of everyone who OD'd in a residence, 0.907801 of people OD'd in their own residence."
## [1] "There were 144 people who OD'd in their own residence."
## [1] "The proportion of decedents ODing in their own residence was 0.669767."
## [1] "Out of everyone who OD'd in a residence, 0.867470 of people OD'd in their own residence."
## [1] "There were 215 people who OD'd in their own residence."
## [1] "The proportion of decedents ODing in their own residence was 0.673981."
## [1] "Out of everyone who OD'd in a residence, 0.856574 of people OD'd in their own residence."
## [1] "There were 195 people who OD'd in their own residence."
## [1] "The proportion of decedents ODing in their own residence was 0.696429."
## [1] "Out of everyone who OD'd in a residence, 0.836910 of people OD'd in their own residence."
## Rows: 5
## Columns: 32
## Groups: cocaine, combo..her.pharm.or.fent..OR.pharm.fent, heronly, pharmonly, fentonly, heroin, X6.mam, morphine, hermor_nocod, codeine, cod_w_no_hermor, di.H.codeine, hydromorphone, oxymorphone, hydrocodone, oxycodone, methadone, buprenorphine, fentanyl..4ANPP.too., Frankens, fent.or.frankens, tramadol, opioid.analogs..e.g...U47700., otherop, pharma_w_meth_no_fent.or.op.analogs.or.cod.or..other.op., pharma_nobupnometh, other, benzos, amphetamine, EtOH [5]
## $ cocaine <int> 0, 0, 0, 0, 0
## $ combo..her.pharm.or.fent..OR.pharm.fent <int> 0, 0, 0, 0, 0
## $ heronly <int> 0, 0, 0, 1, 1
## $ pharmonly <int> 0, 0, 1, 0, 0
## $ fentonly <int> 1, 1, 0, 0, 0
## $ heroin <int> 0, 0, 0, 1, 1
## $ X6.mam <int> 0, 0, 0, 1, 1
## $ morphine <int> 0, 0, 0, 1, 1
## $ hermor_nocod <int> 0, 0, 0, 1, 1
## $ codeine <int> 0, 0, 0, 1, 1
## $ cod_w_no_hermor <int> 0, 0, 0, 0, 0
## $ di.H.codeine <int> 0, 0, 0, 0, 0
## $ hydromorphone <int> 0, 0, 0, 0, 0
## $ oxymorphone <int> 0, 0, 0, 0, 0
## $ hydrocodone <int> 0, 0, 0, 0, 0
## $ oxycodone <int> 0, 0, 0, 0, 0
## $ methadone <int> 0, 0, 1, 0, 0
## $ buprenorphine <int> 0, 0, 0, 0, 0
## $ fentanyl..4ANPP.too. <int> 1, 1, 0, 0, 0
## $ Frankens <int> 0, 0, 0, 0, 0
## $ fent.or.frankens <int> 1, 1, 0, 0, 0
## $ tramadol <int> 0, 0, 0, 0, 0
## $ opioid.analogs..e.g...U47700. <int> 0, 0, 0, 0, 0
## $ otherop <int> 0, 0, 0, 0, 0
## $ pharma_w_meth_no_fent.or.op.analogs.or.cod.or..other.op. <int> 0, 0, 1, 0, 0
## $ pharma_nobupnometh <int> 0, 0, 0, 0, 0
## $ other <int> 0, 1, 1, 0, 0
## $ benzos <int> 0, 0, 0, 0, 1
## $ amphetamine <int> 0, 0, 0, 0, 0
## $ EtOH <int> 0, 0, 0, 0, 0
## $ THC <int> 0, 0, 0, 1, 0
## $ n <int> 2, 2, 2, 2, 2
The top 5 substance combinations for 2018 are:
## Rows: 5
## Columns: 33
## Groups: xyla, combo, heronly, pharmonly, fentonly, Heroin, X6.mam, Morphine, hermor_nocod, Codeine, cod.w.no.hermor, di.H.codeine, Hydromorphone, oxymorphone, Hydrocodone, Oxycodone, Methadone, bup, fentanyl..4.ANPP.too., frankens, fent...frankens, tramadol, opioid.analogs..e.g...U47700., Other.Op, pharma.w.meth.bup.no.fent.or.other.op, pharma_nobupnometh, other, benzos, cocaine, amphetamine, EtOH [5]
## $ xyla <int> 0, 0, 0, 0, 0
## $ combo <int> 0, 0, 1, 0, 0
## $ heronly <int> 0, 0, 0, 0, 0
## $ pharmonly <int> 0, 0, 0, 0, 0
## $ fentonly <int> 1, 1, 0, 1, 1
## $ Heroin <int> 0, 0, 1, 0, 0
## $ X6.mam <int> 0, 0, 1, 0, 0
## $ Morphine <int> 0, 0, 1, 0, 0
## $ hermor_nocod <int> 0, 0, 1, 0, 0
## $ Codeine <int> 0, 0, 0, 0, 0
## $ cod.w.no.hermor <int> 0, 0, 0, 0, 0
## $ di.H.codeine <int> 0, 0, 0, 0, 0
## $ Hydromorphone <int> 0, 0, 0, 0, 0
## $ oxymorphone <int> 0, 0, 0, 0, 0
## $ Hydrocodone <int> 0, 0, 0, 0, 0
## $ Oxycodone <int> 0, 0, 0, 0, 0
## $ Methadone <int> 0, 0, 0, 0, 0
## $ bup <int> 0, 0, 0, 0, 0
## $ fentanyl..4.ANPP.too. <int> 1, 1, 1, 1, 1
## $ frankens <int> 0, 0, 0, 0, 0
## $ fent...frankens <int> 1, 1, 1, 1, 1
## $ tramadol <int> 0, 0, 0, 0, 0
## $ opioid.analogs..e.g...U47700. <int> 0, 0, 0, 0, 0
## $ Other.Op <int> 0, 0, 0, 0, 0
## $ pharma.w.meth.bup.no.fent.or.other.op <int> 0, 0, 0, 0, 0
## $ pharma_nobupnometh <int> 0, 0, 0, 0, 0
## $ other <int> 0, 0, 0, 0, 1
## $ benzos <int> 0, 0, 0, 0, 0
## $ cocaine <int> 0, 1, 1, 1, 0
## $ amphetamine <int> 0, 0, 0, 0, 0
## $ EtOH <int> 0, 0, 0, 1, 1
## $ THC <int> 0, 0, 0, 0, 0
## $ n <int> 5, 5, 4, 3, 2
The top 5 substance combinations for 2019 are:
## Rows: 5
## Columns: 32
## Groups: combo, heronly, pharmonly, fentonly, Heroin, X6.mam, Morphine, hermor_nocod, Codeine, cod.w.no.hermor, di.H.codeine, Hydromorphone, oxymorphone, Hydrocodone, Oxycodone, Methadone, bup, fentanyl..4.ANPP.too., frankens, fent...frankens, tramadol, opioid.analogs..e.g...U47700., Other.Op, pharma.w.meth.bup.no.fent.or.other.op, pharma_nobupnometh, other, benzos, cocaine, amphetamine, EtOH [4]
## $ combo <chr> "0", "0", "0", "0", "0"
## $ heronly <chr> "0", "0", "0", "0", "0"
## $ pharmonly <chr> "0", "0", "0", "0", "0"
## $ fentonly <chr> "1", "1", "1", "1", "1"
## $ Heroin <dbl> 0, 0, 0, 0, 0
## $ X6.mam <dbl> 0, 0, 0, 0, 0
## $ Morphine <dbl> 0, 0, 0, 0, 0
## $ hermor_nocod <dbl> 0, 0, 0, 0, 0
## $ Codeine <dbl> 0, 0, 0, 0, 0
## $ cod.w.no.hermor <dbl> 0, 0, 0, 0, 0
## $ di.H.codeine <dbl> 0, 0, 0, 0, 0
## $ Hydromorphone <dbl> 0, 0, 0, 0, 0
## $ oxymorphone <dbl> 0, 0, 0, 0, 0
## $ Hydrocodone <dbl> 0, 0, 0, 0, 0
## $ Oxycodone <dbl> 0, 0, 0, 0, 0
## $ Methadone <dbl> 0, 0, 0, 0, 0
## $ bup <dbl> 0, 0, 0, 0, 0
## $ fentanyl..4.ANPP.too. <dbl> 1, 1, 1, 1, 1
## $ frankens <dbl> 0, 0, 0, 0, 0
## $ fent...frankens <dbl> 1, 1, 1, 1, 1
## $ tramadol <dbl> 0, 0, 0, 0, 0
## $ opioid.analogs..e.g...U47700. <dbl> 0, 0, 0, 0, 0
## $ Other.Op <dbl> 0, 0, 0, 0, 0
## $ pharma.w.meth.bup.no.fent.or.other.op <dbl> 0, 0, 0, 0, 0
## $ pharma_nobupnometh <dbl> 0, 0, 0, 0, 0
## $ other <dbl> 0, 0, 0, 1, 0
## $ benzos <dbl> 0, 0, 0, 0, 0
## $ cocaine <dbl> 1, 1, 0, 1, 1
## $ amphetamine <dbl> 0, 0, 0, 0, 0
## $ EtOH <dbl> 0, 1, 0, 0, 1
## $ THC <dbl> 0, 0, 0, 0, 1
## $ n <int> 12, 10, 8, 8, 7
The top 5 substance combinations for 2020 are:
## Rows: 5
## Columns: 32
## Groups: combo, her.only, pharm.only, fent.only, Heroin, X6.mam, Morphine, hermor_nocod, Codeine, cod.w.no.hermor, di.H.codeine, Hydromorphone, oxymorphone, Hydrocodone, Oxycodone, Methadone, bup, fentanyl..4.ANPP.despropionyl.fent.too., frankens, fent...frankens, tramadol, opioid.analogs.e.g.mitragynine, Other.Op, pharma.w.meth.bup.no.fent.or.other.op, pharma_nobupnometh, other, benzos, cocaine, amphetamine..including.eutylone., EtOH [4]
## $ combo <int> 0, 0, 0, 0, 0
## $ her.only <int> 0, 0, 0, 0, 0
## $ pharm.only <int> 0, 0, 0, 0, 0
## $ fent.only <int> 1, 1, 1, 1, 1
## $ Heroin <int> 0, 0, 0, 0, 0
## $ X6.mam <int> 0, 0, 0, 0, 0
## $ Morphine <int> 0, 0, 0, 0, 0
## $ hermor_nocod <int> 0, 0, 0, 0, 0
## $ Codeine <int> 0, 0, 0, 0, 0
## $ cod.w.no.hermor <int> 0, 0, 0, 0, 0
## $ di.H.codeine <int> 0, 0, 0, 0, 0
## $ Hydromorphone <int> 0, 0, 0, 0, 0
## $ oxymorphone <int> 0, 0, 0, 0, 0
## $ Hydrocodone <int> 0, 0, 0, 0, 0
## $ Oxycodone <int> 0, 0, 0, 0, 0
## $ Methadone <int> 0, 0, 0, 0, 0
## $ bup <int> 0, 0, 0, 0, 0
## $ fentanyl..4.ANPP.despropionyl.fent.too. <int> 1, 1, 1, 1, 1
## $ frankens <int> 0, 0, 0, 0, 0
## $ fent...frankens <int> 1, 1, 1, 1, 1
## $ tramadol <int> 0, 0, 0, 0, 0
## $ opioid.analogs.e.g.mitragynine <int> 0, 0, 0, 0, 0
## $ Other.Op <int> 0, 0, 0, 0, 0
## $ pharma.w.meth.bup.no.fent.or.other.op <int> 0, 0, 0, 0, 0
## $ pharma_nobupnometh <int> 0, 0, 0, 0, 0
## $ other <int> 1, 0, 0, 0, 0
## $ benzos <int> 0, 0, 0, 0, 0
## $ cocaine <int> 1, 1, 1, 1, 0
## $ amphetamine..including.eutylone. <int> 0, 0, 0, 0, 0
## $ EtOH <int> 0, 0, 0, 1, 0
## $ THC <int> 0, 0, 1, 0, 0
## $ n <int> 20, 16, 13, 13, 12
The top 5 substance combinations for 2021 are:
## Rows: 5
## Columns: 32
## Groups: combo, her.only, pharm.only, fent.only, Heroin, X6.mam, Morphine, hermor_nocod, Codeine, cod.w.no.hermor, di.H.codeine, Hydro.morphone, oxy.morphone, Hydro.codone, Oxy.codone, Methadone, bup, fentanyl..4.ANPP.despropionyl.fent.too., frankens, fent...frankens, tramadol, opioid.analogs.e.g.mitragynine, Other.Op, pharma.w.meth.bup.no.fent.or.other.op, pharma_nobupnometh, other, benzos, cocaine, amphetamine.including.eutylone.MDMA, EtOH [5]
## $ combo <int> 0, 0, 0, 0, 0
## $ her.only <int> 0, 0, 0, 0, 0
## $ pharm.only <int> 0, 0, 0, 0, 0
## $ fent.only <int> 1, 1, 1, 1, 1
## $ Heroin <int> 0, 0, 0, 0, 0
## $ X6.mam <int> 0, 0, 0, 0, 0
## $ Morphine <int> 0, 0, 0, 0, 0
## $ hermor_nocod <int> 0, 0, 0, 0, 0
## $ Codeine <int> 0, 0, 0, 0, 0
## $ cod.w.no.hermor <int> 0, 0, 0, 0, 0
## $ di.H.codeine <int> 0, 0, 0, 0, 0
## $ Hydro.morphone <int> 0, 0, 0, 0, 0
## $ oxy.morphone <int> 0, 0, 0, 0, 0
## $ Hydro.codone <int> 0, 0, 0, 0, 0
## $ Oxy.codone <int> 0, 0, 0, 0, 0
## $ Methadone <int> 0, 0, 0, 0, 0
## $ bup <int> 0, 0, 0, 0, 0
## $ fentanyl..4.ANPP.despropionyl.fent.too. <int> 1, 1, 1, 1, 1
## $ frankens <int> 0, 0, 0, 0, 0
## $ fent...frankens <int> 1, 1, 1, 1, 1
## $ tramadol <int> 0, 0, 0, 0, 0
## $ opioid.analogs.e.g.mitragynine <int> 0, 0, 0, 0, 0
## $ Other.Op <int> 0, 0, 0, 0, 0
## $ pharma.w.meth.bup.no.fent.or.other.op <int> 0, 0, 0, 0, 0
## $ pharma_nobupnometh <int> 0, 0, 0, 0, 0
## $ other <int> 0, 1, 0, 1, 0
## $ benzos <int> 0, 0, 0, 0, 0
## $ cocaine <int> 1, 1, 1, 0, 0
## $ amphetamine.including.eutylone.MDMA <int> 0, 0, 0, 0, 0
## $ EtOH <int> 0, 0, 1, 0, 1
## $ THC <int> 0, 0, 0, 0, 0
## $ n <int> 21, 19, 17, 15, 11
The top 5 substance combinations for 2022 are:
I identify chronic users crudely – I look for entries where the words “chronic” [can sometimes indicate chronic pain, meaning opioid scripts], “Chronic”, “user”, “drug use”, “drug user”, “drug abuse”, “snort”, “snorts”, “drug abuse”, “addict”, “addicted”, “rehab”, “sober house”, “clean” or “abuse” pops up in either the notes field or immediate cause of death, because that generally means that the person had chronic drug use [based on my look at the data]
## [1] "There were at least 39 people with known chronic use out of 120 decedents in 2018, which is 32.500000 percent of all decedents."
## [1] "There were at least 71 people with known chronic use out of 175 decedents in 2019, which is 40.571429 percent of all decedents."
## [1] "There were at least 109 people with known chronic use out of 215 decedents in 2020, which is 50.697674 percent of all decedents."
## [1] "There were at least 163 people with known chronic use out of 319 decedents in 2021, which is 51.097179 percent of all decedents."
## [1] "There were at least 150 people with known chronic use out of 280 decedents in 2022, which is 53.571429 percent of all decedents."
Please note: this field and all fields explored below are only available up to 2020.
## [1] "There were 79 people found within 24 hours, which is 0.658333 of all decedents."
## [1] "There were 22 people found in over 24 hours, which is 0.183333 of all decedents."
## [1] "There were 129 people found within 24 hours, which is 0.737143 of all decedents."
## [1] "There were 32 people found in over 24 hours, which is 0.182857 of all decedents."
## [1] "There were 159 people found within 24 hours, which is 0.739535 of all decedents."
## [1] "There were 33 people found in over 24 hours, which is 0.153488 of all decedents."
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h
Under 24h
Over 24h